

Clouds in the Met Office models Can ARM CMWG help with our future development?

ARM cloud modelling and aerosol meeting

Wed Sep 30th

Jon Petch

Peter Hill, James Manners, Cyril Morcrette

People

- Radiation
 - James Manners
 - Peter Hill
- Clouds
 - Cyril Morcrette
- Microphysics (see Paul and Adrian's talks)
 - Paul Field, Adrian Hill and Jonathan Wilkinson

Contents

- What we do with our model
 - weather through to climate
- Radiation (cloudy)
 - a cloud generator and McICA
- Some longer term plans
 - clouds, radiation, (microphysics & aerosols)
- Cloud scheme diagnosis
 - the sick plots
- How ARM CMWG might help

Current atmospheric model configurations

What do our parametrizations need to do?

The operational forecast models

Met Office

NWP (horizontal grid lengths)

• Global: 40 km (25km Dec)

Atlantic/Europe: 12 km

• UK: 1.5 km

Also various ensembles (25ish) at a reduced resolution

NWP (levels)

• Global: 70

Atlantic/Europe: 70

• UK: 70 (might go to 110)

Longer time scales

Horizontal resolution

- Climate (global): 60 140 km
- Seasonal (global) 120 km (perturbed physics and new I.C run every 2 days)
- 15 days: **90 km** (soon 40 km)
- Regional climate 12 30 km

Vertical levels

63-80 typically (same res in troposphere)

T+21: 9pm 2 Sep 2009 UKV & NAE

T+21: 9pm 2 Sep 2009 UKV & Global

Radiation: cloud generator and McICA

McICA & generated cloud

McICA & generated cloud

Introduction of McICA method:

Pincus, Barker & Morcrette 2003 JGR, 108, 4376

A simple cloud generator:

Raisanen et al. 2004 QJRMS, 130, 2047

Effect of generated cloud and McICA noise in GCMs:

NCAR CAM: Raisanen et al. 2005 J. Climate, 18, 4715

GFDL-AM2: Pincus et al. 2006 MWR, 134, 3644

ECHAM5-FMI: Raisanen et al. 2008 QJRMS, 134, 481

CCCma/GEM: Barker et al. 2008 QJRMS, 134, 1463

ECMWF: Morcrette et al. 2008 MWR, **136**, 4760

Sampling generated cloud using McICA

Reducing the noise in McICA - choosing our k-terms carefully

Surface shortwave fluxes from 1000 runs of the same cloud scene

Minimising McICA noise – ensuring the key k-terms in the LW and SW 'see' similar clouds

Clouds generally cause heating in the SW and cooling in the LW.

When the plane-parallel total (SW+LW) effect is calculated, errors can cancel.

This cancellation does not necessarily occur for McICA if the SW and LW 'see' independent random columns.

A free tweak is to match choice of columns in LW and SW for main terms.

McICA noise in the climate model

Noise causes a change in some convection and BL type indicators

The cloud generator would need regional variations to hit observed biases

tuned overlap and variability assumptions

Strategy for clouds – radiation and microphysics

Strategy for clouds – radiation and microphysics

Strategy for clouds – radiation and microphysics

The cloud scheme

QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 134: 2093–2107 (2008)

Published online 12 November 2008 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/qj.333

PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description

Damian R. Wilson, Andrew C. Bushell, Amanda M. Kerr-Munslow, Jeremy D. Price and Cyril J. Morcrette*

Met Office, Exeter, UK.

N processes $\Delta Cf = \sum \Delta Cf_i$ i=1N processes $\Delta qI = \sum \Delta qI_i$ i=1

PC2: A Beginner's Guide

(Prognostic Cloud, Prognostic Condensate)

What are the processes which lead to our cloud water contents?

With PC2 we can answer this question:

- Profiles
- Cross sections
- Global means
- Global maps
- •Sick maps

Met Office

Profiles: Tropical Warm Pool TWP-ICE region for Dec-Jan-Feb

Shortwave Longwave **Boundary-layer Erosion Microphysics** Convection Advection Initialization **Pressure** change **Total**

Vertically integrated process rates

JJA: <u>Proportion</u> of LWP increment from each source

Convection
Pressure change
Initialization
Long-wave
Boundary-layer
Advection
Numerical checks

DJF: Proportion of LWP increment from each source

Convection
Pressure change
Initialization
Long-wave
Boundary-layer
Advection
Numerical checks

Summary/ARM help

Summary

- We plan to make the make use of the cloud scheme terms and other physics in the cloud generator as well as in the development of PC2 itself
- We plan to try microphysics on the generated cloud

ARM help...

- Collaboration on work to evaluate the process rates in CRM/LES?
- Evaluation of process rates from observations???

PC2 increment analysis for RICO

Convective
detrainment
Erosion
Microphysics
LW rad
SW rad
BL turbulence
Dynamics

The end

Aerosol schemes in the UM

The UM currently includes a choice of two different aerosol schemes:

CLASSIC

• "First generation" scheme, developed over the last 15 years. Models aerosol mass only, with fixed size and composition.

UKCA-MODE

 Replacement scheme under development in collaboration with the University of Leeds. Models aerosol mass and number, with variable size and composition.

Aerosol species included

- Ammonium sulphate (Sources: anthro & natural SO₂, DMS)
- Ammonium nitrate (Sources: anthro & natural NH₃, HNO₃)
- Black carbon (Sources: biomass burning, fossil fuels and biofuels)
- Primary & Secondary Organic carbon (Sources: as BC, plus terpenes)
- Mineral dust
- Sea-salt

Aerosol representation in CLASSIC

Prognostic:

- Sulphate (3 log-normal modes)
- Nitrate (2 log-normal modes)
- Biomass-burning BC/OC (3 log-normal modes)
- Fossil & bio-fuel BC (3 log-normal modes)
- Fossil & bio-fuel OC (3 log-normal modes)
- Mineral dust (6 size sections)

Diagnostic:

• Sea-salt: $f(u_{10})$ (2 log-normal modes)

Climatology:

Modelled as an external mixture

Aerosol representation in UKCA-MODE

Mode name	Size range	Composition	Soluble?
nucl-sol	r < 5 nm	SU	Yes
Aitken-sol	5 < r < 50 nm	SU, BC, OC	Yes
accum-sol	50 nm < r < 500 nm	SU, BC, OC, SS, DU	Yes
coarse-sol	r > 500 nm	SU, BC, OC, SS, DU	Yes
Aitken-ins	5 < r < 50 nm	BC, OC	No
accum-ins	50 nm < r < 500 nm	DU	No
coarse-ins	r > 500 nm	DU	No

(Nitrate not yet implemented)

Modelled as internally mixed modes

Aerosol effects in the UM

 Direct effect (and therefore semi-direct effect) of all aerosols

 1st (albedo) and 2nd (precip. efficiency) indirect effects on liquid water clouds (soluble aerosols only)

No effects on ice clouds included

Parameterization of droplet number concentration

CLASSIC

Empirical scheme based purely on aerosol mass, treated as an *external mixture*:

 $N_d = f$ (accumulation modes of SO₄, NO₃, OC & SS)

Cannot distinguish between different aerosol types.

UKCA-MODE

Mechanistic parameterization being developed at Oxford University: uses information on aerosol number, size and composition of *internally mixed* aerosols.

Impact of geoengineered increases of droplet number in the three principal marine stratocumulus regions

(Only changes significant at 5% level shown)

3

0

Land precip. (mm day⁻¹)

Jones et al. (2009), JGR 114, D10106